120+128t=16t^2

Simple and best practice solution for 120+128t=16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 120+128t=16t^2 equation:



120+128t=16t^2
We move all terms to the left:
120+128t-(16t^2)=0
determiningTheFunctionDomain -16t^2+128t+120=0
a = -16; b = 128; c = +120;
Δ = b2-4ac
Δ = 1282-4·(-16)·120
Δ = 24064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24064}=\sqrt{256*94}=\sqrt{256}*\sqrt{94}=16\sqrt{94}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-16\sqrt{94}}{2*-16}=\frac{-128-16\sqrt{94}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+16\sqrt{94}}{2*-16}=\frac{-128+16\sqrt{94}}{-32} $

See similar equations:

| -1=r-(-9) | | 5y+9=3y-13 | | 1=1-4n-6 | | 1/8=21/4x | | 7h+2=69 | | 6z-42=z | | ⅛=2¼x | | 100=32a | | r-(-3)=-7 | | 1/8=2¼x | | 9x-5+3x=6x-77 | | 4/c+3+9/c^2-9=3/c-3 | | 8^(5x+7)=10 | | -144=-9x | | -16=-2a-8 | | 7-6{2x+3}=42 | | 4z(3z+1)=9z+3 | | 40=1/3(-9x-30)-2 | | 17+y=-23 | | -114=-9x-30 | | 4-5(2x+11)=-11+10(x+10) | | -20k=5 | | (s+4)(s-3)=8 | | -15=2n+3n | | 1y/3=5/6 | | f=(-1)=-2(-1)-3 | | -13+8x=11 | | 8b+10=26 | | p^2=3p+108 | | 4-5(2x-11)=-11+10(x+10) | | 3y-y+15=41 | | 4(3y-5)-7=17 |

Equations solver categories